Validation of CFD Approach for Gas Turbine Internal Cooling Passage Heat Transfer Prediction

Daniel Wilde
Introduction to Turbine Cooling

- Turbine components are exposed to extreme temperatures
 - Power generation of turbine proportional to firing (turbine entry) temperature
 - Technologies to cool turbine blade at high temperatures of great interest
- Means of turbine cooling
 - Internal cooling:
 - Compressor bleed air directed through cavities or passages within blade
 - Insulation
 - Low conductivity ceramic coatings which separate blade metal from hot gaspath
 - Internal cooling flow exhausted at blade surface to form cool film
- Steady state temperature occurs when heat into the blade is balanced the heat removal

Internal cooling example
Courtesy NASA HOST documentation
Project Scope

• Objective:
 – Develop and validate a CFD approach for rotating internal cooling serpentine passages which captures all relevant physics
 – Demonstrate sensitivity of model to changes in operating point

• Approach
 – CFD model generated and evaluated for:
 • Mesh sensitivity
 • Boundary condition / assumption sensitivity
 • Turbulence model sensitivity
 – Various experimental data sets collected for validation
 • Comprehensive comparison of CFD results to experiment
 • Sensitivity of model to various physics investigated
Outline

• Discussion of Physics of internal cooling flow
 – Investigation of expected flow behavior

• Experimental Data selection
 – Introduction to experimental rig geometries and procedures
 – Description of available data and post-processing required to compare CFD results to experiment

• CFD model development
 – Model calibration to baseline experimental data

• CFD Results Validation
 – Simulation performed based on model development outcomes and validated against selected experimental data
Physics and Model Behavior: Straight Duct

- Flow through a square duct develops secondary flows in the corners.
 - Discovered by Nikuradse,
 - purely resultant of anisotropic turbulent stresses

- The ability to generate these is often a turbulence model benchmark
 - Case F-0111 from “Collaborative Testing of Turbulence Models”

- Linear eddy viscosity models are unable to generate these secondary flows.
Physics and Model Behavior: Turning Flow

- As the flow approaches the turn, Dean vortices are generated by centrifugal instabilities
- Pair of counter-rotating vortices develops
 - Operating points considered exhibit high Dean numbers
 - Flow is unstable and multiple solutions can exist
 - Unfavorable pressure gradient on the inner wall drives eventual separation
- The turbulence model should accurately capture the separation and reattachment points.

Steady, Non-Rotating Square Channel CFD Showing Dean Vortices; (top) view looking radially inward; (bottom) isometric showing projected vectors and secondary flows
Physics and Model Behavior: Turning Flow

- As the flow approaches the turn, Dean vortices are generated by centrifugal instabilities
- Pair of counter-rotating vortices develops
 - Operating points considered exhibit high Dean numbers
 - Flow is unstable and multiple solutions can exist
 Unfavorable pressure gradient on the inner wall drives eventual separation
- The turbulence model should accurately capture the separation and reattachment points.

Reynolds-stress model indicates poor reattachment
Physics and Model Behavior: Passage Rotation

• Impact of rotation on a duct flow often termed “Coriolis Effect”
 • As flow moves radially outward:
 – Flow tangential velocity is less than that of walls
 – Core flow collects against trailing wall
 • As flow moves radially inward:
 – Flow tangential velocity is greater than that of the walls
 – Core flow collects against leading wall
• Counter Rotating vortices develop
 – Secondary flow structure perpendicular to that induced by turning at bends

Effects of rotation in a straight square passage, Courtesy HOST documentation
Physics and Model Behavior

Rotation + Turning

- Through the turn, the Coriolis force and the Dean vortex generation counteract each other.
- The result is complex turbulent flows influenced by
 - Centrifugal instability
 - Apparent Coriolis forces
 - Separation / Reattachment
- An unfortunate limitation of standard LEVM is a single turbulent length scale, where smaller scale eddies are immediately dissipated by the model.
- The SAS model can avoid the damping by inclusion of a source term to adjust the length scale locally
 - Where the “resolved length scale” approach the von Karman length scale, the model is allowed to operate in “LES-like” mode by limiting the eddy viscosity.
HOST: Geometry and Nomenclature

- HOST experiment
 - 4 leg square passage
 - Heated wall sections maintained at constant temperature (±2°F)
 - Heated plates labeled by letter (A through R)
 - Heat flux measured and heat transfer coefficient calculated based on local bulk temperature
 - Local \(t_{bulk} \) based on energy balance
 - HTC then converted to a normalized Nusselt (\(Nu/Nu_{\infty} \)) based on fully developed duct flow correlation
 - \(Nu_{\infty} = 0.0176 \times (Re)^{0.8} \)
 - Inner bend walls and final leg not heated
 - Chamfers
 - 1mm chamfers reported at corners of serpentine passage
 - Passage dimension, 0.5” by 0.5”
 - \(D_h = 0.5176” \)
 - Chamfers reduce cross sectional area slightly
HOST: Geometry and Nomenclature

- 3-D model with skewed turbulators shown
- Inner bend walls and fourth leg unheated
- Turbulators
 - Smooth / rounded
 - Staggered
 - Blockage Ratio: 10%
 - Pitch Ratio: 10
 - Straight (flow-normal) and 45° skewed turbulators considered
- Distance from axis of rotation to 1st heated section: 49 \(D_h \)

Smooth
Straight
Turbulator Geometry
Inlet
Outlet
Trailing Endwall
Leading Endwall
Side Outer
Unheated Wall
Rotation Axis
Texas A&M Experimental Data

• Similar to HOST program data, with the following differences:
 – Geometry more clearly defined
 • Bend dimensions explicitly provided
 • Aspect ratio 2:1
 • 2 pass circuit
 • Non-staggered 45 degree turbulators

 – Higher resolution of experimental data

• Inlet condition
 – Flow enters through hole in passage side and turns to flow along passage

 – Velocity and turbulence information at CFD domain inlet unavailable

ASME Journal of Turbomachinery Vol. 124, APRIL 2002

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ro #</td>
<td>0.21</td>
</tr>
<tr>
<td>Reynolds #</td>
<td>25,000</td>
</tr>
<tr>
<td>Density Ratio $\Delta \rho / \rho$</td>
<td>0.115</td>
</tr>
<tr>
<td>Rib height to hydraulic diameter (e/D_h)</td>
<td>0.094</td>
</tr>
<tr>
<td>Rib pitch-to-height (P/e)</td>
<td>10</td>
</tr>
</tbody>
</table>
University of Manchester Experimental Data

- 2 Pass Circuit rotated on turntable
 - Axis of rotation near center of test article (not explicitly documented)
 - Presents unfortunate uncertainty in comparison to CFD
- Experimental heat transfer contour plots in rotating passage
 - Liquid crystal approach used to generate contours from experiment
 - Allows for qualitative comparison to CFD

- Working fluid is water

- URANS SST applied
 - Pseudo-time averaging not possible for 2-D heat transfer data
 - Time averaged Nusselt # ratio
 - Normalized by Dittus Boelter

<table>
<thead>
<tr>
<th>Reynolds Number</th>
<th>Inflowing leg velocity (m/s)</th>
<th>Prandtl Number</th>
<th>T in ($^\circ$C)</th>
<th>Ω (rad/s)</th>
<th>Rotation Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>36,000</td>
<td>1.03</td>
<td>24.7</td>
<td>24.7</td>
<td>13.7</td>
<td>0.4</td>
</tr>
</tbody>
</table>

CFD Model Selection

• CFD model settings and inputs investigated

 – Baseline HOST geometry and operating point used for model calibration
 – Sensitivity to Mesh resolution, Boundary Conditions, and Turbulence modelling evaluated

 – Resultant model setup used in model validation across different operating points and geometries
Grid Independence Study

- Structured and unstructured meshes of varying resolution generated to evaluate grid dependence of solution

- Rotating baseline conditions with normal turbulators considered

- RKE used for grid independence study
 - Performed prior to final turbulence model selection

- Consistent result between all hex meshes
 - Disagreement with tet results
 - Increased tet refinement improves agreement
 - Plate G strongly affected
Grid Independence Study

- Mesh type and resolution varied
 - Impact of mesh changes evaluated
 - Low mesh sensitivity reduces risk of discretization error as factor in future analysis
 - RKE turbulence model used
 - Consistently solid convergence
- Result
 - Hex meshes for validation target 30 M elements
 - Tet mesh in upcoming analysis should be dense to account for uncertainty

<table>
<thead>
<tr>
<th>Type</th>
<th>Element Count</th>
<th>Node Count</th>
<th>Average plate error (from nominal)</th>
<th>Temperature Out (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>6 M</td>
<td>5.9 M</td>
<td>2.08 %</td>
<td>604.5</td>
</tr>
<tr>
<td>Hex</td>
<td>17 M</td>
<td>18.3 M</td>
<td>1.05 %</td>
<td>604.5</td>
</tr>
<tr>
<td>Hex</td>
<td>32 M</td>
<td>33.1 M</td>
<td>N/A</td>
<td>604.5</td>
</tr>
<tr>
<td>Hex</td>
<td>50 M</td>
<td>51.0 M</td>
<td>1.01 %</td>
<td>604.4</td>
</tr>
<tr>
<td>Tet</td>
<td>9.4 M</td>
<td>4.4 M</td>
<td>9.02 %</td>
<td>603.5</td>
</tr>
<tr>
<td>Tet</td>
<td>27 M</td>
<td>12.5 M</td>
<td>15.32 %</td>
<td>603.3</td>
</tr>
<tr>
<td>Tet</td>
<td>41 M</td>
<td>18.8 M</td>
<td>8.38 %</td>
<td>603.4</td>
</tr>
<tr>
<td>Tet</td>
<td>63 M</td>
<td>25.5 M</td>
<td>5.10 %</td>
<td>603.8</td>
</tr>
</tbody>
</table>

* 32 M element Hex mesh considered nominal
Final Mesh Details

- 30 M element count targeted based on grid independence study

- Smooth element distribution along and away from walls

- Stretching ratio maintained below 1.2

- Block topology generated to accommodate 45 degree skew of turbulators
 - Half turbulators closed out smoothly
Mesh Summary

- Hex meshes to be used for HOST validation suite
- Mesh generated and smoothed in Gridpro
- All upcoming HOST results calculated on mesh as shown

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Element Count</th>
<th>Shells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth</td>
<td>6 M</td>
<td></td>
</tr>
<tr>
<td>Normal Turbulators</td>
<td>36 M</td>
<td></td>
</tr>
<tr>
<td>Skewed Turbulators</td>
<td>31 M</td>
<td></td>
</tr>
</tbody>
</table>
Turbulence model comparison

• Turbulence model comparison at baseline conditions
 – Stationary and rotating
 – Smooth walled HOST geometry

• RKE, SST, RSM, and SAS evaluated
 – RSM Omega scheme selected
 • Recommended by fluent for situations with high curvature
Turbulence model comparison:
Rotating, Smooth

![Graphs showing Nu/Nu_inf ratio for different stations and models.](image)

- **Experiment**
- **RKE**
- **SST**
- **RSM**
- **SAS**

Legend:
- **Leading**
- **Trailing**
- **Inner**
- **Outer**

Station:
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- P
- R

Date: 4/27/2015

Author: Daniel Wilde
Turbulence Model Study: Conclusions

- Omega based models exhibit greater local variations from experiment, but achieve better overall data match.

- Baseline operation for skewed turbulator geometry, rotating and stationary.

<table>
<thead>
<tr>
<th>Model</th>
<th>Net % error</th>
<th>RMS % error</th>
<th>Net % error</th>
<th>RMS % error</th>
</tr>
</thead>
<tbody>
<tr>
<td>RKE</td>
<td>-10.5</td>
<td>16.4</td>
<td>-2.94</td>
<td>18.3</td>
</tr>
<tr>
<td>SST AVG</td>
<td>-5.66</td>
<td>18.6</td>
<td>-0.885</td>
<td>19.3</td>
</tr>
<tr>
<td>SST CFX</td>
<td>-6.11</td>
<td>20.3</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>RSM</td>
<td>-14.8</td>
<td>19.6</td>
<td>-0.287</td>
<td>17.6</td>
</tr>
<tr>
<td>SAS</td>
<td>-8.17</td>
<td>16.1</td>
<td>-4.102</td>
<td>15.8</td>
</tr>
</tbody>
</table>

Summary of data match with various turbulence models.

45 degree plot of Suction Side heat transfer with various turbulence models.
Validation Approach

- Validation to various experimental data sets:
 - NASA HOST experimentation program
 » 4 pass, square duct with variation in parameters:
 • Rotation number
 • Reynolds Number
 • Density Ratio
 • Rotation Angle
 • Turbulator Configuration
 - Texas A&M data
 » 2 pass rotating turbulated passage with higher resolution data sampling
 - University of Manchester Data
 » 2 pass smooth passage with 2-D experimental Nusselt number contours
- CFD performed at selected experimental points for each experimental program to provide robust understanding of model behavior
HOST Data CFD Validation Suite

<table>
<thead>
<tr>
<th>Case</th>
<th>Re Number</th>
<th>Ro Number</th>
<th>Inlet Density Ratio</th>
<th>Turbulators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25,000</td>
<td>0</td>
<td>0.13</td>
<td>None</td>
<td>Baseline Stationary</td>
</tr>
<tr>
<td>2</td>
<td>25,000</td>
<td>0</td>
<td>0.13</td>
<td>Straight</td>
<td>Baseline Rotating</td>
</tr>
<tr>
<td>3</td>
<td>25,000</td>
<td>0</td>
<td>0.13</td>
<td>45 deg</td>
<td>Effect of Rotation Number</td>
</tr>
<tr>
<td>4</td>
<td>25,000</td>
<td>0.24</td>
<td>0.13</td>
<td>None</td>
<td>Effect of Density Ratio</td>
</tr>
<tr>
<td>5</td>
<td>25,000</td>
<td>0.24</td>
<td>0.13</td>
<td>Straight</td>
<td>Effect of Reynolds Number</td>
</tr>
<tr>
<td>6</td>
<td>25,000</td>
<td>0.24</td>
<td>0.13</td>
<td>45 deg</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>25,000</td>
<td>0.34</td>
<td>0.13</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>25,000</td>
<td>0.34</td>
<td>0.13</td>
<td>45 deg</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>25,000</td>
<td>0.24</td>
<td>0.07</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>25,000</td>
<td>0.24</td>
<td>0.23</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>25,000</td>
<td>0.24</td>
<td>0.07</td>
<td>45 deg</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>25,000</td>
<td>0.24</td>
<td>0.23</td>
<td>45 deg</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>12,500</td>
<td>0.12</td>
<td>0.13</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>12,500</td>
<td>0.12</td>
<td>0.13</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12,500</td>
<td>0.12</td>
<td>0.13</td>
<td>45 deg</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>75,000</td>
<td>0.12</td>
<td>0.13</td>
<td>45 deg</td>
<td></td>
</tr>
</tbody>
</table>
Illustration of flow Behavior: Smooth Stationary Baseline Case

- Dean Vortices apparent
- Relatively calm behavior otherwise
Illustration of flow Behavior:
Skewed, Stationary Baseline Case

- Turbulators add secondary flow component to flow
- Interaction with Dean Vortices is complex

Looking toward Leading (Suction Side) Wall

Volume Rendering of Velocity
3-D Streamlines colored by Velocity
Illustration of flow Behavior: Skewed, Stationary Baseline Case

- Rotation further complicates flow
- Coriolis effectively pulls flow away from leading wall of outflowing sections

Volume Rendering of Velocity

3-D Streamlines colored by Velocity

Looking toward Leading (Suction Side) Wall
HOST Validation: Passage Heat Transfer

- Net heat transfer summary:
 - Indicates accuracy of heat transfer prediction and sensitivity to changes in operating point
- HOST program error analysis indicates up to 30% error by end of passage due to temperature calculation
 - Up to 6% error in first passage
 - True for all experimental results shown

<table>
<thead>
<tr>
<th></th>
<th>Qt,exp</th>
<th>Qt,cfd</th>
<th>Diff</th>
<th>% change from baseline (experiment to experiment)</th>
<th>% change from baseline (CFD to CFD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. smooth</td>
<td>468.12</td>
<td>454.49</td>
<td>2.91%</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>St. skewed</td>
<td>607.65</td>
<td>624.52</td>
<td>2.78%</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>Rot. Smooth</td>
<td>502.73</td>
<td>474.82</td>
<td>5.55%</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>Rot. Straight</td>
<td>557.73</td>
<td>572.41</td>
<td>2.63%</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>Rot. Skewed</td>
<td>606.22</td>
<td>609.95</td>
<td>0.62%</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>Low Re. smooth</td>
<td>324.75</td>
<td>277.46</td>
<td>14.56%</td>
<td>-35.40%</td>
<td>-41.56%</td>
</tr>
<tr>
<td>Low Re. skew</td>
<td>349.06</td>
<td>335.16</td>
<td>3.98%</td>
<td>-42.42%</td>
<td>-45.05%</td>
</tr>
<tr>
<td>High Re. smooth</td>
<td>1054.97</td>
<td>878.64</td>
<td>16.71%</td>
<td>109.85%</td>
<td>85.05%</td>
</tr>
<tr>
<td>High Re. skew</td>
<td>1615.16</td>
<td>1540.95</td>
<td>4.59%</td>
<td>166.43%</td>
<td>152.63%</td>
</tr>
<tr>
<td>High Ro smooth</td>
<td>584.35</td>
<td>522.57</td>
<td>10.57%</td>
<td>16.24%</td>
<td>10.06%</td>
</tr>
<tr>
<td>High Ro skewed</td>
<td>660.14</td>
<td>631.35</td>
<td>4.36%</td>
<td>8.89%</td>
<td>3.51%</td>
</tr>
<tr>
<td>Low Temp. Smooth</td>
<td>246.91</td>
<td>271.11</td>
<td>9.80%</td>
<td>-50.89%</td>
<td>-42.90%</td>
</tr>
<tr>
<td>Low Temp. Skewed</td>
<td>314.86</td>
<td>310.75</td>
<td>1.30%</td>
<td>-48.06%</td>
<td>-49.05%</td>
</tr>
<tr>
<td>High Temp. smooth</td>
<td>1165.16</td>
<td>1136.57</td>
<td>2.45%</td>
<td>131.77%</td>
<td>139.37%</td>
</tr>
<tr>
<td>High Temp. skewed</td>
<td>1359.45</td>
<td>1265.73</td>
<td>6.89%</td>
<td>124.25%</td>
<td>107.51%</td>
</tr>
</tbody>
</table>

* % change from baseline illustrates sensitivity to changes in operating condition
HOST Validation: Baseline operation

- Total heating backed out from experiment
 - Large scale heat transfer modelled well within experimental error
 - All 4 sides together
 - Scalar results for total heat flux through passage
 - Sudden jumps in bends due to plate distribution
 - Model predicted heat transfer well except local variations and inlet effect

<table>
<thead>
<tr>
<th></th>
<th>Qt.exp</th>
<th>Qt.cfd</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth</td>
<td>468.12</td>
<td>454.49</td>
<td>2.91%</td>
</tr>
<tr>
<td>Stationary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skewed turb.</td>
<td>607.65</td>
<td>624.52</td>
<td>2.78%</td>
</tr>
<tr>
<td>Rotating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth</td>
<td>502.73</td>
<td>474.82</td>
<td>5.55%</td>
</tr>
<tr>
<td>Rotating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skewed turb.</td>
<td>606.22</td>
<td>609.95</td>
<td>0.62%</td>
</tr>
</tbody>
</table>

Total Btu/hr through heated plates
Conclusions

• Modelling effort undertaken to:
 – Explore model sensitivity to assumptions and inputs
 – Ability of selected CFD model to capture impact of changes to passage operating point
Questions?

Thank You